
Expanding the Scope of Grammar-Based Enumerative Testing

THEA U. KJELDSMARK, University of California Irvine, USA

Enumerated testing has emerged as a systematic approach to generate test cases and address the limitations
of traditional fuzzing techniques. One of these tools is ET, a grammar-based exhaustive enumerator used
to find bugs in SMT solvers using context-free grammars. In this work, we present ET++, an enhanced
version of the original ET tool. ET++ expands grammar-based exhaustive enumerative testing to support
context-free grammars for any language. By integrating ANTLR parsing and improving grammar translation,
ET++ addresses the limitations of its predecessor, enabling it to handle more complex and varied grammar
definitions across languages. Using ET++, we identified 14 new bugs in SMT solvers and the JavaScript
interpreter Espruino, emphasizing ET++’s effectiveness in uncovering bugs even with small test cases.

CCS Concepts: • Software and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: Grammar-based enumeration, SMT solvers, JavaScript environments

1 Introduction
Ensuring the correctness and robustness of programming languages and satisfiability modulo theory
(SMT) solvers is crucial, as they are foundational tools in software development and verification
processes. Fuzzing has been instrumental in uncovering vulnerabilities in languages like JavaScript
[11, 12, 20] and bugs in SMT solvers such as Z3 and CVC [4, 16, 23]. However, fuzzing is often
unsystematic and random, leading to potentially missed bugs. The inherent randomness of fuzzing
can also generate large test cases, which often complicates the process of identifying and isolating
the root cause of detected bugs for developers.

Instead, previous research has proposed enumerated testing to generate test cases systematically.
One of these tools is ET [22], a grammar-based enumeration tool used to find bugs in SMT solvers.
ET leverages FEAT [7], a functional enumeration library, to generate test cases based on context-free
grammars. Given a number of tests N and a grammar, the generation starts at the smallest possible
test case and continues to the N -smallest input for the specified grammar. This allows ET to take
advantage of the small scope hypothesis [1], which states that most bugs can be found by testing
small inputs. Despite its effectiveness, ET focuses only on SMT solvers, necessitating additional
expansion for broader applicability. In this work, we present ET++ that supports context-free
grammars for any language, evaluate its effectiveness using SMT and JavaScript grammars, and
demonstrate its capability by uncovering 14 new bugs.

2 Our Approach
Design. Given a context-free grammar in the ANTLR format, ET++ first compiles it to algebraic
data types in Haskell. Then, the FEAT enumerator uses these types to realize a test generator for
differential testing. In contrast to ET’s simple string parsing of input grammars, ET++ leverages
ANTLR’s lexer and parser to parse the input grammar. The enhanced translator then converts the
resulting output from the context-free grammar to a regular tree grammar. One challenge with
generating test cases from grammars is the possibility of encountering recursive rules that can lead
to infinite generation paths. To address this issue, ET++ uses a combination of depth-first search to
identify recursive paths and FEAT’s "pay" feature to make these paths more costly. Figure 1 shows
an example of the generated Haskell types for the simple recursive plus statement in Figure 2.
The improved parsing and translation approach enables the use of grammars for any language

and overcomes ET’s limitation of not allowing grammar rules with more than seven arguments.

Author’s Contact Information: Thea U. Kjeldsmark, tkjeldsm@uci.edu, University of California Irvine, USA
Research Advisor: Dominik Winterer, dominik.winterer@inf.ethz.ch.



111:2 Thea U. Kjeldsmark

1 start: plus_stmt;
2 var_name: 'INT_VAR ';
3 plus_stmt: var_name | plus_stmt Plus plus_stmt;
4 Plus: '+';

Fig. 1. Grammar for a simple plus statement grammar.

1 data Plus_stmt = C0_plus_stmt Var_name | C1_plus_stmt Plus_stmt Plus Plus_stmt
2
3 instance Show Plus_stmt where
4 show (C0_plus_stmt var_name) = show var_name
5 show (C1_plus_stmt plus_stmt plus plus_stmt2) =
6 show plus_stmt ++ " " ++ show plus ++ " " ++ show plus_stmt2
7
8 instance Enumerable Plus_stmt where
9 enumerate = share $ aconcat [c1 C0_plus_stmt , pay(c3 C1_plus_stmt)]

Fig. 2. Haskell code generated for the grammar shown in Figure 1.

Furthermore, it enables the use of ANTLR’s operators, such as optional (?), repetition (*), and
alternatives (|), allowing for more flexible grammar definitions.

Grammar Engineering.A key aspect of ET++ are the input grammars. For this work, we derived
grammars for SMT and JavaScript using the ANTLR grammar syntax. For SMT, we focused on
grammars that mix types, including arrays/integers, arrays/reals, bit vectors/floats, and real/integers,
since the original ET work extensively tested grammars with one type. For JavaScript, we developed
both general and specific grammars. We used the respective grammars from the ANTLR repository1
for the general grammars and adjusted them to remove unsupported rule formats. These grammars
allow us to test various language features in the same test generation. However, unless the number
of tests N is sufficiently large, the generated test cases are often very simple due to potential
combinatorial blow-up of the many rule options in a general grammar. To address this, we also
develop specific grammars that target a particular part of the language. For example, for JavaScript,
we have grammars that focus on language aspects such as arrays, conversions, functions, and
classes.

3 Evaluation
To evaluate ET++, we used the developed grammars to generate test cases. We employed differential
testing for SMT solvers and JavaScript to compare outputs across multiple implementations. Using
this approach, we found 6 SMT bugs and 8 bugs in the JavaScript interpreter Espruino, summarized
in Table 1. The SMT testing uses a differential oracle with the solvers Z3 [5] and cvc5 [3]. For
JavaScript testing, we employed a differential oracle approach across six environments: Node.js [17],
Hermes [13], Escargot [8], QuickJS [19], Espruino [9], and Deno [6]. Besides looking for crashes and
unexpected behaviors, we also compared the output of potential operations using console.log()
and print() when applicable. This allows us to identify discrepancies that might indicate potential
bugs or non-standard implementations in specific engines.
One example of a test case that led to a bug is shown in Figure 3, where Espruino returned a

different value than the other environments. The issue stems from an incorrect handling of the
evaluation order with a[0] being treated as a location value instead of immediately evaluating it
1https://github.com/antlr/grammars-v4

https://github.com/antlr/grammars-v4


Expanding the Scope of Grammar-Based Enumerative Testing 111:3

Table 1. Bug Status and Types

Status Z3 cvc5 Espruino Total

Reported 1 5 8 14
Confirmed 0 4 4 8
Fixed 0 2 4 6
Duplicate 0 0 1 1
Won’t fix 0 0 3 3

(a)

Type Z3 cvc5 Espruino Total

Correctness 1 0 8 9
Crash 0 5 0 5

(b)

1 >var a = [1]; a.unshift (2); console.log((2 / (a[0] / a.reverse ().length)));
2 =4 // expected 2 from (2 / (2 / 2))

Fig. 3. Bug #2547 in Espruino found using a test case generated by ET++.

as a read value. Thus, by evaluating a.reverse() first, a[0] evaluated to the incorrect value. The
developers confirmed the issue as a bug and have fixed it since our report2.

4 Related Work
Prior work has proposed various approaches to automated testing of programming languages
through execution-based methods, with many incorporating grammar-based techniques. These can
be classified as white box, grey box, or black box, depending on the level of internal knowledge of
the system under test. Grammar-based white box fuzzing often uses symbolic execution to create
constraints on the program inputs [10, 18]. Grammar-based grey box fuzzing has some knowledge
of the system, such as code coverage [2, 21]. However, having full or partial knowledge of the tested
system might not be feasible. White box approaches may struggle with large systems and grey
box techniques may rely on heuristics that can miss certain test cases. In contrast, grammar-based
black box fuzzing, which does not require any knowledge about the source code, has been applied
to compilers [24] and interpreters for languages like JavaScript [14, 15]. While ET++ classifies as
black box, our enumeration approach is bounded and nonrandom, allowing for a more systematic
exploration of the input space.

5 Conclusion and Future Work
ET++ expands the scope of grammar-based exhaustive testing to support grammars for any context-
free language. By leveraging ANTLR’s parsing capabilities and introducing a more flexible grammar
translation process, we overcome the major limitations of the original ET. Our evaluation of ET++
on SMT solvers and JavaScript environments demonstrates its ability to uncover bugs even from
small test cases. Future work includes searching for more bugs in SMT solvers, JavaScript, and
other programming language implementations. Additionally, we aim to optimize our grammar
engineering to ensure a balance between the small scope hypothesis and including the complexity
that might be necessary for mature languages or engines.

References
[1] Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. 2003. Evaluating the “Small Scope

Hypothesis”. Proceedings of ACM Symposium on the Principles of Programming Languages (POPL) (2003).

2https://github.com/espruino/Espruino/issues/2547

https://github.com/espruino/Espruino/issues/2547


111:4 Thea U. Kjeldsmark

[2] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig, Ahmad-Reza Sadeghi, and Daniel
Teuchert. 2019. NAUTILUS: Fishing for Deep Bugs with Grammars. Proceedings of the Annual Network and Distributed
System Security Symposium (NDSS) (2019).

[3] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,
Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,
Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems TACAS.

[4] Robert Brummayer and Armin Biere. 2009. Fuzzing and delta-debugging SMT solvers. In Proceedings of the International
Workshop on Satisfiability Modulo Theories (SMT).

[5] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT solver. In Proceedings of the Theory and Practice of
Software International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS/ETAPS).

[6] deno [n. d.]. Deno. https://deno.com/. [Online; accessed 20-Oct-2024].
[7] Jonas Duregård, Patrik Jansson, and Meng Wang. 2012. Feat: functional enumeration of algebraic types. In Proceedings

of the 2012 Haskell Symposium.
[8] escargot [n. d.]. Escargot. https://github.com/Samsung/escargot. [Online; accessed 20-Oct-2024].
[9] espruino [n. d.]. Espruino. https://www.espruino.com/. [Online; accessed 20-Oct-2024].
[10] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based whitebox fuzzing. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
[11] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. 2019. CodeAlchemist: Semantics-Aware Code Generation to Find

Vulnerabilities in JavaScript Engines. In Proceedings of the Annual Network and Distributed System Security Symposium
(NDSS).

[12] Xiaoyu He, Xiaofei Xie, Yuekang Li, Jianwen Sun, Feng Li, Wei Zou, Yang Liu, Lei Yu, Jianhua Zhou, Wenchang Shi,
and Wei Huo. 2021. SoFi: Reflection-Augmented Fuzzing for JavaScript Engines. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[13] hermes [n. d.]. Hermes. https://github.com/facebook/hermes. [Online; accessed 20-Oct-2024].
[14] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2018. Grammarinator: a grammar-based open source fuzzer. In

Proceedings of the ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation
(A-TEST).

[15] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with code fragments. In Proceedings of the USENIX
Conference on Security Symposium.

[16] Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. 2020. Detecting critical bugs
in SMT solvers using blackbox mutational fuzzing. In Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).

[17] nodejs [n. d.]. Node.js. https://nodejs.org/. [Online; accessed 20-Oct-2024].
[18] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2016. Model-based whitebox fuzzing for program binaries.

In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering (ASE).
[19] quick [n. d.]. QuickJs. https://bellard.org/quickjs/. [Online; accessed 20-Oct-2024].
[20] Ye Tian, Xiaojun Qin, and Shuitao Gan. 2021. Research on Fuzzing Technology for JavaScript Engines. In Proceedings

of the International Conference on Computer Science and Application Engineering (CSAE).
[21] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: grammar-aware greybox fuzzing. In Proceedings of

the International Conference on Software Engineering (ICSE).
[22] Dominik Winterer and Zhendong Su. 2024. Validating SMT Solvers for Correctness and Performance via Grammar-

Based Enumeration. Proceedings of the ACM on Programming Languages (PACMPL) (2024).
[23] DominikWinterer, Chengyu Zhang, and Zhendong Su. 2020. Validating SMT solvers via semantic fusion. In Proceedings

of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
[24] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In

Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

https://deno.com/
https://github.com/Samsung/escargot
https://www.espruino.com/
https://github.com/facebook/hermes
https://nodejs.org/
https://bellard.org/quickjs/

	Abstract
	1 Introduction
	2 Our Approach
	3 Evaluation
	4 Related Work
	5 Conclusion and Future Work
	References

